

Using climate forecast information in decision-making

David Brayshaw, University of Reading (UK); d.j.brayshaw@reading,ac.uk

Associate Professor in Climate Science and Energy Meteorology; research.reading.ac.uk/met-energy/

Thanks to James Fallon (UREAD), S2S4E collaborators (esp Michael Christoph, EnBW), and UREAD Energy-Met group

This project has received funding from the Horizon 2020 programme under grant agreement n 776787. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

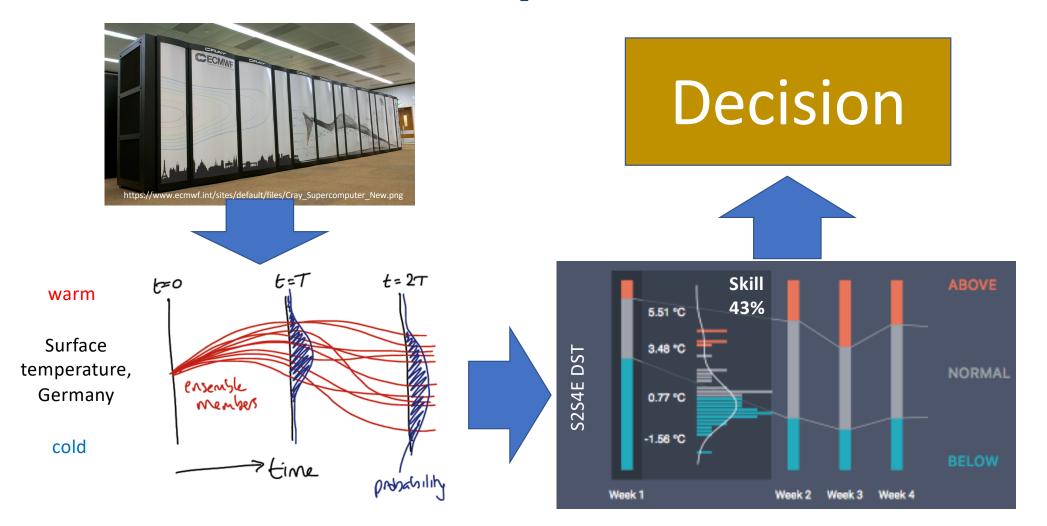
Review and introduction

- From previous speakers, climate variability has a significant impact on Europe. S2S variations:
 - Predictive skill (varying levels depending on lead-time and geography)
 - Relevant to risk-management in energy (e.g., trading, maintenance, security of supply, scheduling).
 - 3-year research programme within S2S4E across 5 European research institutions
 - S2S forecast assessment, skill enhancement and use-cases (S2S4E Deliverables 4.1-4.4 + publications/datasets)
 - Calibration, processing and skill assessment (see Andrea Manrique's talk)
 - Modelling impacts of climate on RE and demand (see Hannah Bloomfield's talk)
 - "Seamless" S2S forecast horizons (see Ilias Pechlivanidis's talk)
 - Pattern forecasting (see Llorenc Lledo's talk)
 - Machine learning and multi-model combination (see Paula Gonzalez's talk)

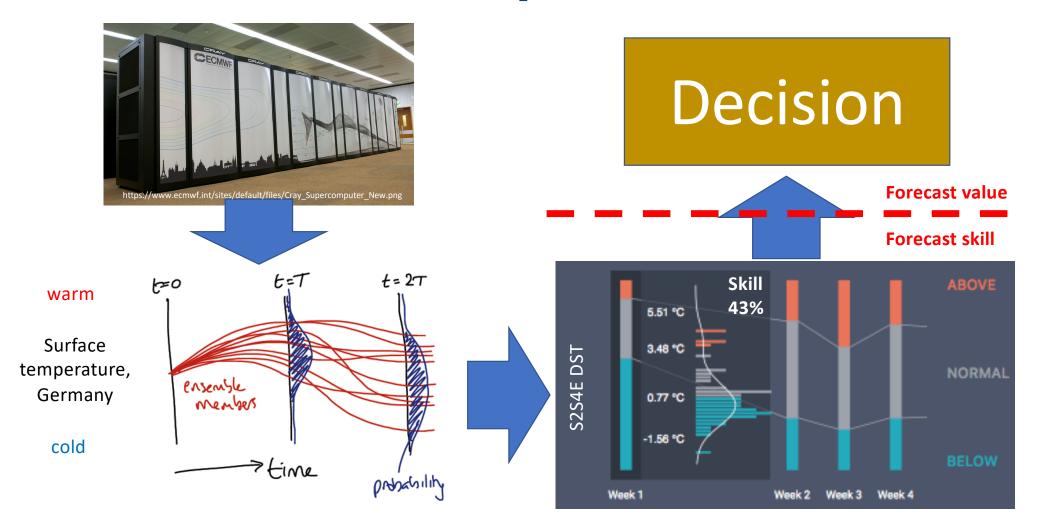


Bloomfield et al, 2020

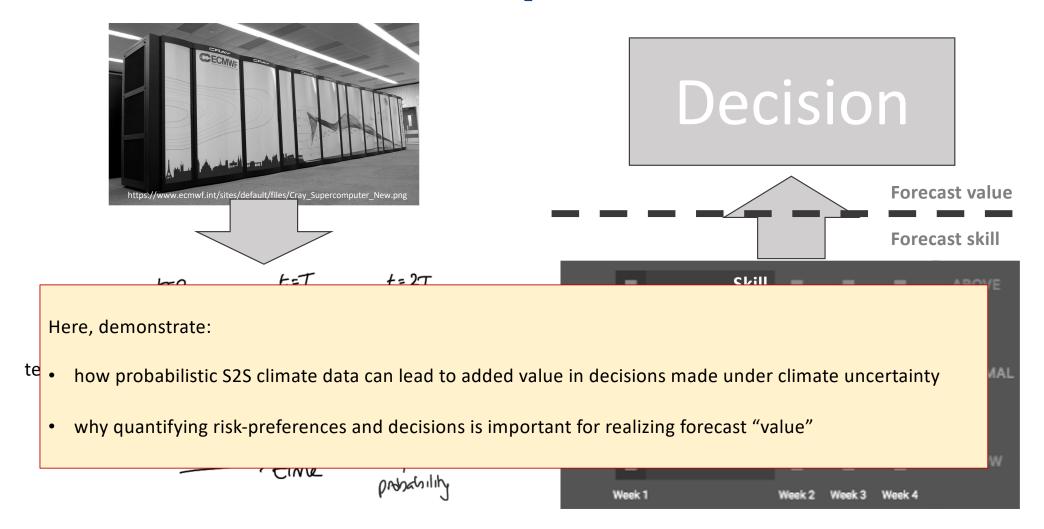
Climate information process



Climate information process



Climate information process



Adding value: energy futures trading

Forwards and futures

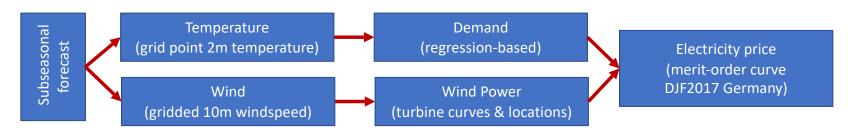
- Ahead-of-time contracts for management of price or volume risk in energy markets
- Example: weekly blocks of baseload generation at a fixed price, sold weeks in advance
- Here: purely financial trades (no transfer of underlying physical asset)

Need price forecast

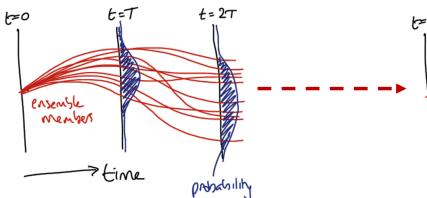
- Fundamentals-based price model
- Converts subseasonal weather forecast \rightarrow subseasonal price forecast
- Many approximations and assumptions, but...
- ... added value if trades using forecast better anticipate price N-weeks in advance, compared to the "market"

Work with James Fallon (UREAD), Michael Christoph (EnBW), and S2S4E collaborators With support from the UREAD Energy-Met research group (Hannah Bloomfield, Paula Gonzalez, David Livings)

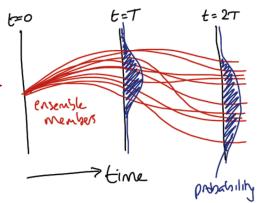
Conversion chain (skill)



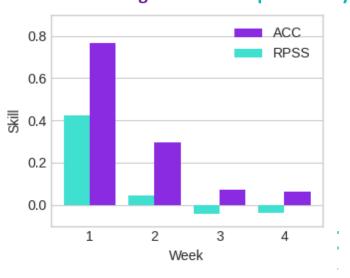
Daily-resolution ensembles of temperature & windspeed

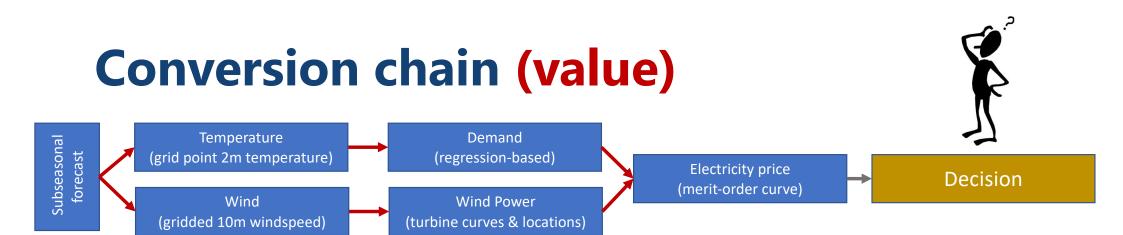


Daily-resolution ensembles of price

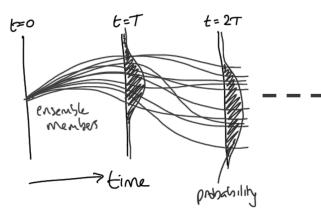


Skill of DJF price forecast compared to climatology ensemble average and tercile probability

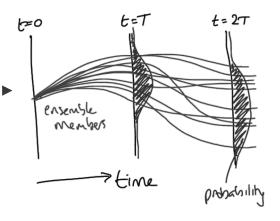




Daily-resolution ensembles of temperature & windspeed

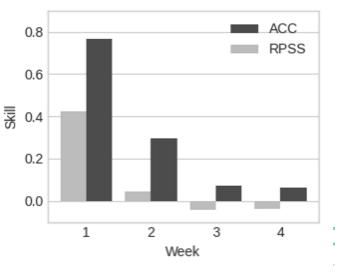


Daily-resolution ensembles of price



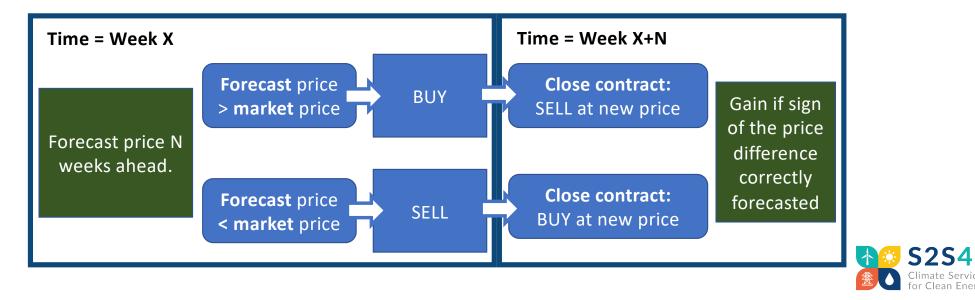
Skill of Price forecast compared to climatology

Ensemble average and tercile probability



Decision modelling

- Enter N-weeks-ahead futures contract then hold until delivery.
- What is added value of trading on the prices *predicted by S2S forecasts* compared to the *market's expectation*?
- Simplest case using ensemble-mean price forecast equivalent to, e.g.:
 - If S2S forecast ensemble-average suggests future market price is *undervalued* (forecast price > market price) then
 - buy contract for power at market price N-weeks-ahead, then sell contract at the day-ahead spot price
- Many more advanced variants possible!

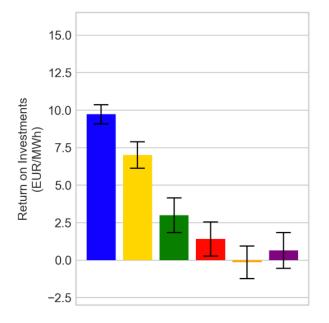


The "total" value of S2S forecasts

- Applied to German market assumed to have no access to meteorological forecasts (market has historic data only)
 - Significant value add (c.f., nominal unit price ~€40/MWh)
 - Perfect foresight: €10/MWh
 - Subseasonal week-2 forecast (days 11-18): €3/MWh

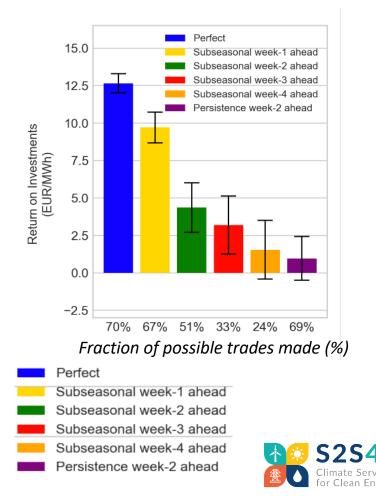
Caveats:

- Trades every week: not every individual trade "wins"
- Perfect model assumption (predicts *simulated* prices which exclusively depend on weather)
- Market access to forecasts (much of the value "priced in")



The added value of probabilistic info

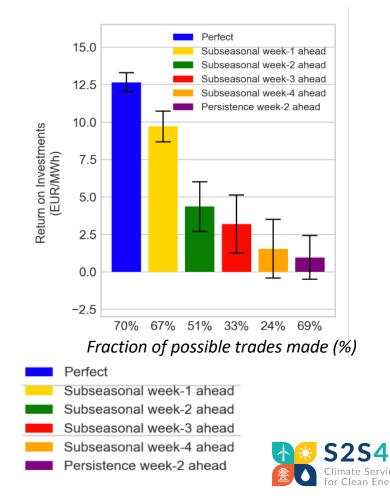
- Adjust decision model, trade only if:
 - >45% chance in upper/lower tercile
 - <20% chance in opposing tercile
- Per-trade value add (c.f., the equivalent ensemble-mean trader)
 - Perfect foresight: ~25% improvement
 - Subseasonal week-2 forecast (days 11-18): ~20-30% improvement
 - Caveats (as previous but now also):
 - Trades only on strong signals → many fewer trades made
 - Cumulative value over time less than "ensemble mean" strategy
 - Best strategy depends on risk/return preferences



The added value of probabilistic info

- Adjust decision model, trade only if:
 - >45% chance in upper/lower tercile
 - <20% chance in opposing tercile
- Per-trade value add (c.f., the equivalent ensemble-mean trader)
 - Perfect foresight: ~25% improvement
 - Subseasonal week-2 forecast (days 11-18): ~20-30% improvement
 - Caveats (as previous but now also):
 - Trades only on strong signals → many fewer trades made
 - Cumulative value over time less than "ensemble mean" strategy
 - Best strategy depends on risk/return preferences

Value is in the eye of the beholder... ... it depends on what the user wants to achieve.



Implicit risk preferences

Case study thinking:

- "Would a (past) forecast have provided 'useful information' to users?"
- Assessment is subjective but often based on some of:
 - Mean shift: What was the 50th centile of forecast distribution?
 - Direction: Was there a clearly dominant tercile?
 - **Extremes**: Did any single ensemble member capture an extreme event?
 - If "yes", then forecast said to be "potentially useful" in this case
 - i.e., user would have known to take an "action" if they'd had access to the forecast

... but these :

- Imply a view of risk preferences and mission objectives
- → form an (implicit) decision model!

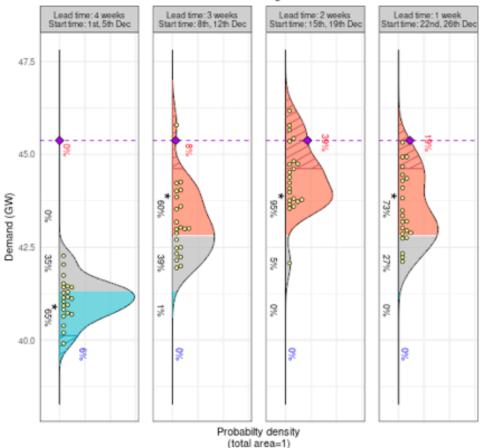


Figure: Bloomfield et al (submitted to ESSD)

Implicit risk preferences

Case study thinking:

- "Would a (past) forecast have provided 'useful information' to users?"
- Assessment is subjective but often based on some of:
 - Mean shift: What was the 50th centile of forecast distribution?
 - **Direction**: Was there a clearly dominant tercile?
 - Extremes: Did any single ensemble member capture an extreme event?
 - If "ves".

• i.e., user Meteorologists, in seeking (or being asked) to provide "yes"/"no" forecasts, are *implicitly* access to applying some form of decision model ...

... which may not align with the user's risk preferences.

(a)

47.5

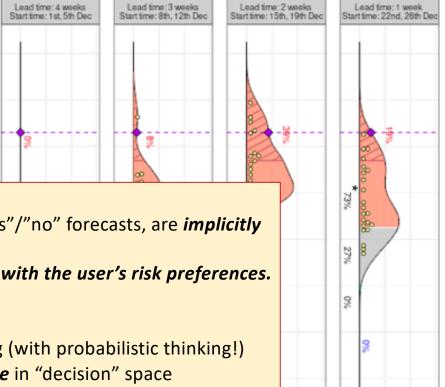
45.0

... but these

- Imply a Veed for better:
- **Form** Elicitation of user risk preferences and decision-making (with probabilistic thinking!)
 - Quantitative modelling/understanding of forecast value in "decision" space ٠

Figure: Bloomfield et al (submitted to ESSD)

UK Demand (GW) sub-seasonal Forecasts for week including 28th Dec 2009



Probabilty density (total area=1)

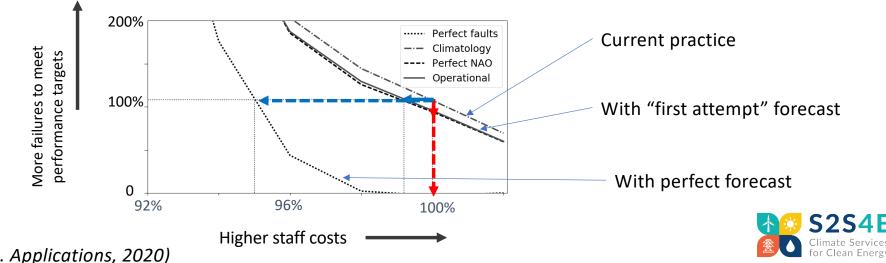
Strategic vs. operational

UK telecoms (not S2S4E, this work co-funded by BT):

- Weather driven fault rates on fixed-line infrastructure: roughly speaking, faults increase when it rains lots
- Need to fix faults quickly: secure additional maintenance resource if required but with ~1-2 weeks notice (→ forecast needed)

Pattern-based method using ECMWF forecast. Skill translates to potential value in:

- Improve performance for a given staffing cost (fewer operational failures)
- Reduce staffing costs for a given performance level (lower long term costs)



Brayshaw et al (Met. Applications, 2020)

Summary

Demonstrated translation of subseasonal forecast skill into potential "value" for trading

- Perfect model experiment suggests ~several % improvement over historic information only
- Use of probabilistic information offers substantial per-trade improvements over ensemble-average
- Caveat: limitations → difficult to replicate in short, noisy "real" price data with other external drivers
- See posters & talks by James Fallon, Paula Gonzalez and Hannah Bloomfield

The decision matters...

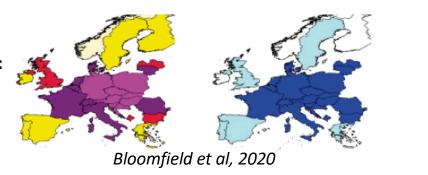
- Explicit modelling of decision "converts" complex probabilistic forecasts to simple deterministic outcomes
- The user (decision-maker) is the expert, not the meteorologist (beware implicit decision modelling)
- Suggests need for decision makers to engage with probabilistic nature of climate risk:
 - What choices and actions can be taken?
 - Explicit identification of attitudes to "objectives", "risk", and "return".

Resources to explore S2S forecasts in energy applications: S2S4E research datasets (national wind, demand, solar)

<u>https://research.reading.ac.uk/met-energy/data</u>

Research datasets for "energy indicators" (demand, wind, solar):

Historic observed + ensemble subseasonal forecasts



References and links

- Email: <u>d.j.brayshaw@reading.ac.uk</u>
- Personal page: <u>https://research.reading.ac.uk/meteorology/people/david-brayshaw/</u>
- Group page (and links to datasets): <u>https://research.reading.ac.uk/met-energy/data</u>

Papers:

- Bloomfield, H. C., Brayshaw, D. J. and Charlton-Perez, A. J. (2020) Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorological Applications, 27 (1). e1858. ISSN 1469-8080 doi: https://doi.org/10.1002/met.1858
- Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P.M. and Charlton-Perez, A. J. (submitted) Sub-seasonal forecasts of demand, wind power and solar power generation for 28 European Countries. For Earth System Science Data.
- Brayshaw, D. J., Halford, A., Smith, S. and Kjeld, J. (2020) Quantifying the potential for improved management of weather risk using subseasonal forecasting: the case of UK telecommunications infrastructure. Meteorological Applications, 27 (1). e1849. <u>https://doi.org/10.1002/met.1849</u>

Datasets

- Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): ERA5 derived time series of European country-aggregate electricity demand, wind power generation and solar power generation: hourly data from 1979-2019. University of Reading. Dataset. https://researchdata.reading.ac.uk/id/eprint/272
- Gonzalez, Paula, Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): Sub-seasonal forecasts of European electricity demand, wind power and solar power generation. University of Reading. Dataset. <u>https://researchdata.reading.ac.uk/id/eprint/275</u>

Thank you Get in touch for more information!

_	

Public reports of the project will be available for download on the S2S4E website: **www.s2s4e.eu**

Project coordinator: Albert Soret, Barcelona Supercomputing Center (BSC) **Contact us:** s2s4e@bsc.es

Follow us on Twitter, LinkedIn & Facebook! @s2s4e

This project has received funding from the Horizon 2020 programme under grant agreement n 776787. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.