Bridging the information divide between climate science and energy modeling

16:20 panel discussion

Climate forecasting for energy workshop

\$2\$4E/openmod joint event

4 December 2020

Robbie Morrison

Release **03**3 December 2020
Live status

Slides accompanying the second panel discussion at the Climate forecasting for energy online workshop held 4 December 2020. The workshop was jointly organized by the S2S4E project and the Open Energy Modelling Initiative.

 $https://s2s4e.eu/newsroom/climate-forecasting-for-energy-event \\ https://forum.openmod-initiative.org/t/2330$

Copyright (c) 2020 Robbie Morrison (robbie.morrison@posteo.de)
This work is licensed under a Creative Commons Attribution 4.0 International License.
SPDX-License-Identifier: CC-BY-4.0
License-Text: https://spdx.org/licenses/CC-BY-4.0.html

Moderation

- Robbie Morrison (framing of discussion) energy system modeler Berlin, Germany
- Ekaterina Fedotova (managing questions)
 Global Energy Problems Laboratory
 Moscow Power Engineering Institute (MPEI), Russia

Panelists

Roberta Boscolo

Climate and Energy Science Officer
World Meteorological Organization (WMO), Switzerland

Sofia Simões

Head of Unit, Resource Economics Unit National Laboratory of Energy and Geology (LNEG), Portugal

Ralph Evins

Director, Energy in Cities lab University of Victoria (UVic), Canada

Alberto Troccoli

Founder and Managing Director World Energy and Meteorology Council (WEMC), United Kingdom

Information bridges

- data bridges piping data from one model type to the next
- educational bridges
 helping communities connect, for example
 - power system modelers to understand climate risk
 - climate scientists to understand system modeling requirements
- research collaborations establishing better and deeper partnerships
- joint end-user support providing results and context to industry and for public policy
- distributed data architectures supporting reproducible workflows and complex data integration
 - DBpedia Databus project

The Value Cycle (network) Approach

SCIENCE FOR SERVICES JOURNEY

How to bridge demand-supply and energy-climate models

Will buildings will overheat more in future?

→ Predict increased use/purchase of AC

Similar issues in electrification of heating, demand-response, ...

Understand frequency/severity of heat waves under different climate scenarios

(+response of different buildings to heat stress)

Must be kept consistent with supply-side scenarios

Likely technically impractical to directly link climate models to supply + demand models...

Different ways of abstracting / reconstituting information from climate models?

Bridge physics-based and machine-learning models?

Dr Ralph Evins revins@uvic.ca @energyincities energyincities.gitlab.io/website

